

Study programme MSc in Physics Academic Year 2024/2025

(Courtesy translation of the Manifesto degli Studi approved by the Department's Board on May 15, 2024)

1. OVERVIEW

The Master of Science in Physics (LM-17) aims at:

- providing a deep and flexible education in the various areas of modern physics, its theoretical and experimental aspects and its applications; with particular attention to the recent developments of research and technology.
- providing the cultural foundations, the technical abilities, the full control of the scientific research method that are needed to get in touch with the recent research frontiers studied in the Department, and give a personal contribution with the Master's Thesis work.
- promoting scientific and technological innovation by a direct research experience in the areas studied in the Department and also by international collaborations. In order to achieve these goals, the Master of Science in Physics devotes approximately one third of its ECTS to the core lectures modules in modern Physics, one third to more specialized lecture modules in one of the research areas that are actively pursued in the Department of Physics, one third to the master thesis, which is coordinated within a research group under the guidance of a supervisor.

The variety of the research areas is reflected by a course structure with different study plans suggested by the research areas active in the department. Several research areas are interdisciplinary and largely benefit from the interaction with research groups in Engineering, Biology and Mathematics.

Suggested study plans will be published on the website (https://offertaformativa.unitn.it/en/lm/physics/courses-timetable-exams); the student can choose a different and personalized study plan, following the rules of the Didactic Regulation.

2. ADMISSION REQUIREMENTS

In order to be admitted to the Master of Science in Physics, graduates shall fulfill the following requirements:

- a) curricular requirements:
 - I. Bachelor degree lasting at least three years, or equivalent
 - II. a total number of 84 ECTS in Mathematics and Physics (MAT/* + FIS/*), of which at least 24 ECTS in the area of Mathematics (MAT/*) and at least 54 ECTS in the area of Physics (FIS/*).
- b) an adequate personal qualification, including knowledge of English at level B2, or more.

The personal qualification will be judged with an interview by a Committee, composed by proff. P.H.J. Hauke e M. Orlandi. The interview will be arranged at the Department of Physics within November 2024. Students with at least 30 ECTS in Mathematics (MAT/*) and 90 ECTS in Physics (FIS/*) with a Bachelor degree and a final mark of at least 95/110 might be accepted without an interview.

The knowledge of english at level B2 is verified by presenting international certificates, or by passing an exam at the home university.

3. COURSE STRUCTURE

The academic calendar will be published on the website as soon as possible.

3.a Core modules (TAF B)

MANDA	MANDATORY CORE COURSES										
Year	Code	module	Tuition hours	ECTS	SSD	Term	Lecturer				
1	145164	Experimental Methods	56	6	FIS/01	I	Leonardo Ricci				
1	146268	Advanced Quantum Mechanics	56	6	FIS/02	I	Alessandro Roggero				

Besides these two mandatory core lecture courses, graduates choose five options from the list below for a total number of 42 ECTS. The choice must include:

- 1 module belonging to the so called SSD FIS/02

Year	Code	Module	Tuition hours	ECTS	SSD	Term	Lecturer
1	145646	Quantum Field Theory I	56	6	FIS/02	II	Albino Perego
1	145177	Statistical Mechanics	48	6	FIS/02	I	Raffaello Potestio
1	145649	Computational Physics	48	6	FIS/02	II	Francesco Pederiva

- 3 modules belonging to FIS/03 and/or FIS/04

Year	Code	Module	Tuition hours	ECTS	SSD	Term	Lecturer
1	145653	Solid State Physics I	48	6	FIS/03	I	Giacomo Baldi
1	145511	Atomic Physics	56	6	FIS/03	I	Gabriele Ferrari
1	145854	Condensed matter theory	56	6	FIS/03	I	Matteo Calandra Buonaura
1	145650	Physics of disordered systems	48	6	FIS/03	II	Marco Zanatta
1	145645	Nuclear and Subnuclear Physics	48	6	FIS/04	II	Francesco Pederiva
1	145651	Quantum Theories for Multiparticle Systems	48	6	FIS/03	II	Pier Luigi Cudazzo
(1 or) 2	145775	Astroparticle Physics	48	6	FIS/04	I	Roberto Battiston

1 (or 2)	146269	Particle Physics	48	6	FIS/04	II	Roberto Iuppa
(1 or) 2	146110	Antimatter Physics	48	6	FIS/03	I	Sebastiano Mariazzi
2	145890	Physics and Chemistry of semiconductor Materials	48	6	FIS/03	I	Michele Orlandi

- 1 module not yet selected among the list of core modules

Year	Code	Module	Tuition hours	ECTS	SSD	Term	Lecturer
1	145648	Experimental Physics	60 totali, di cui 12 ore di lezione 48 ore esercitazioni	6	FIS/01	II	Riccardo Checchetto
1	145646	Quantum Field Theory I	56	6	FIS/02	II	Albino Perego
1	145177	Statistical Mechanics	48	6	FIS/02	I	Raffaello Potestio
1	145649	Computational Physics	48	6	FIS/02	II	Francesco Pederiva
1	145653	Solid State Physics I	48	6	FIS/03	I	Giacomo Baldi
1	145511	Atomic Physics	56	6	FIS/03	I	Gabriele Ferrari
1	145854	Condensed matter theory	56	6	FIS/03	I	Matteo Calandra Buonaura
1	145650	Physics of disordered systems	48	6	FIS/03	II	Marco Zanatta
1	145645	Nuclear and Subnuclear Physics	48	6	FIS/04	II	Francesco Pederiva
1	145651	Quantum Theories for Multiparticle Systems	48	6	FIS/04	II	Pier Luigi Cudazzo
(1 or) 2	145775	Astroparticle Physics	48	6	FIS/04	I	Roberto Battiston
1 (or 2)	146269	Particle Physics	48	6	FIS/04	II	Roberto Iuppa
(1 or) 2	146110	Antimatter Physics	48	6	FIS/03	I	Sebastiano Mariazzi
2	145890	Physics and Chemistry of Materials	48	6	FIS/03	I	Michele Orlandi

3.b Elective integrative courses

Besides the mandatory and elective core modules, students shall obtain other 24 ECTS, i.e. 4 modules among the integrative elective courses in the following SSD: FIS/*, MAT/06, MAT/07, CHIM/03, CHIM/06, BIO/10.

In this respect, students are encouraged to follow the indications given by the research group they wish to join for their master thesis. Suggestions and further information are available on the website of the Physics Department (https://offertaformativa.unitn.it/en/lm/physics/courses-hours-examinations).

Integrative modules for the Master of Science in Physics are listed below. It is possible to choose modules in different subjects, offered by the University of Trento's other master courses and declared as affiliated subjects. The list of affiliated subjects can be found in the Regolamento della Laurea Magistrale in Fisica. The study plan,

including the chosen elective courses, will be subject to approval.

Graduates can take other core modules in the list – which have not been selected among the required 5 by choosing them as elective.

Year	Code	Module	Note	Tuition hours	ECTS	SSD	Term	Lecturer
1	145338	Bio-Medical Imaging		48	6	FIS/07	II	Albrecht Haase
1	145171	Optoelectronics		48	6	FIS/01	II	Lorenzo Pavesi
1	145175	Quantum Optics		48	6	FIS/01	II	Da definire
1	146288	Quantum gases		48	6	FIS/03	II	Da definire
1	145889	Multi-scale methods in soft matter physics	Blended	48	6	FIS/03	II	Raffaello Potestio
1 (or 2)	146270	General Relativity		48	6	FIS/02	I	Massimiliano Rinaldi
2	145282	Photonics		48	6	FIS/01	I	Stefano Azzini
2	145235	Molecular and Cellular Biophysics		48	6	BIO/10	I	Marina Scarpa
2	145512	Nanoscience		48	6	FIS/01	I	Marina Scarpa
2	145647	Quantum Field Theory II		48	6	FIS/02	I	Da definire
2	145232	Laboratory of Energy Conversion Processes		56	6	FIS/01	I	Paolo Tosi
2	145283	Laboratory of Advanced Photonics		56	6	FIS/01	I	Paolo Bettotti
2	145230	Laboratory of Advanced Electronics		56	6	FIS/01	I	Leonardo Ricci
2	145231	Laboratory of Condensed Matter		56	6	FIS/01	I	Marco Zanatta
(1 or) 2	146108	Laboratory of Advanced Interferometry		56	6	FIS/01	II	Antonio Perreca
2	145891	Medical Biophysics		48	6	FIS/07	II	Francesco Tommasino
1 (or 2)	146271	Quantum Computing and quantum simulations		56	6	FIS/03	II	Philipp Hauke
(1 or) 2	145892	Gravitational Wave Astronomy and Multimessenger Observations		48	6	FIS/05	I	Giovanni Andrea Prodi
(1 or) 2	145882	Relativistic and multimessenger astrophysics		48	6	FIS/05	I	Albino Perego
1 (or 2)	145654	Solid state physics II		48	6	FIS/03	II	Roberto S. Brusa

2	145659	Computational methods for transport phenomena		48	6	FIS/02	II	Da definire
2	145285	Statistical field theory		48	6	FIS/02	II	Stefano Giorgini
(1 or) 2	145894	Experimental Techniques in Nuclear and Subnuclear Physics		48	6	FIS/04	II	Francesco Nozzoli
2	146281	Laboratory of optics for quantum sciences and technologies		56	6	FIS/03	I	Gabriele Ferrari
1 (or 2)	145347	Groups and representations for Physics	Blended	48	6	FIS/02	II	Mauro Spreafico
1	145153	Experimental Physics Laboratory at High School Level I (offered by Master in Mathematics)		56	6	FIS/08	I	Pasquale Onorato
1	145537	Physics education: theoretical and experimental approaches (offered by Master in Mathematics)	Proped.: Exp. Phys. Lab. High School I	56	6	FIS/08	II	Pasquale Onorato
1 (or 2)	145907	Mathematical physics – Quantum relativistic theories (offered by Master in Mathematics)		63	9	MAT/07	II	Valter Moretti
(1 or) 2	146119	Atmospheric Physics and Modelling (offered by Master in Environmental and Land Engineering)		60	6	FIS/06	I	Lorenzo Giovannini
(1 or) 2	145605	Renewable Energy and Meteorology (offered by Master in Energetic Engineering)		60	6	FIS/06	II	Lorenzo Giovannini
1 (or 2)	140531	Introduction to meteorology and climatology (offered by Master in Environmental Meteorology)		60	6	FIS/06	I	Simona Bordoni
(1 or) 2	145734	Air pollution modelling (offered by Master in Environmental Meteorology)		60	6	FIS/06	II	To be defined
1 (or 2)	140571	Atmospheric boundary layer and turbulence (offered by Master in Environmental Meteorology)		60	6	FIS/06	II	Dino Zardi
1 (or 2)	140607	Introduction to climate change (offered by Master in Environmental Meteorology)		60	6	FIS/06	II	Simona Bordoni
(1 or) 2	140575	Tropical meteorology and climate (offered by Master in Environmental Meteorology)		60	6	FIS/06	II	Simona Bordoni
(1 or) 2	140534	Environmental physical chemistry (offered by Master in Environmental Meteorology)		30	6	CHIM/0 3	I	Daniela Ascenzi
2	145546	Computational Biophysics (offered by Master in Quantitative and Computational Biology)		96	12	FIS/02 e FIS/03	I	Gianluca Lattanzi e Luca Tubiana
(1 or) 2	146214	Markov Decision Processes and Reinforcement Learning (offered by Master in Mathematics)		48	6	MAT/06	I	Luigi Amedeo Bianchi

The Department Council may decide to cancel some of the above modules when less than 3 students would be interested to attend them. Students interested in canceled modules will be timely informed and advised on alternative available choices.

3.c Language Knowledge

3 ECTS: foreign students have to acquire competencies in italian language: 140189 – Prova di conoscenza lingua italiana (A1)

Italian students have to acquire competencies in scientific English or in another language of the European Union:

145852 – Scientific Writing and Presentations in English (B2a)

145328 – Ulteriori conoscenze linguistiche (inglese C1)

145582 – Ulteriori conoscenze linguistiche (lingua tedesca B2)

145584 – Ulteriori conoscenze linguistiche (lingua spagnola B2)

145583 – Ulteriori conoscenze linguistiche (lingua francese B2)

3.d Elective modules (free)

Students will obtain other 12 ECTS, without any constraint on their choice of modules. The Physics Department offers

1 (or 2)	146278	Quantum electromagnetics	Corso in modalità compatta	48	6	ING- INF/02	II	Paolo Rocca
1 (or 2)	146279	Numerical electromagnetics for Medical Diagnostic	Corso in modalità compatta	48	6	ING- INF/02	II	Andrea Massa
1 (or 2)	140532	Environmental fluid mechanics (mutuato dal		90	9	ICAR/0	I	Marco Toffolon
		CdLM in Environmental Meteorology)				1		

Any module offered by other Departments or even other Universities can be eligible as elective free module, provided that student obtains a final evaluation and the Department of Physics' approval of the study plan. Students are invited to ask the research group they wish to join for their Master thesis for advice on this choice.

3.e Health and Safety training

All students are requested to attend the training about Health and Safety in the workplace following the instructions available at this webpage: https://infostudenti.unitn.it/it/formazione-sicurezza-studenti-studentesse

General course: mandatory for all

Specific course:

- Low risk: for students who attend computer laboratories, office work

- Medium risk: for students who attend other didactic or research laboratories

4. STUDY PLANS

Information days on the lectures module, study plans and research activities will be organized in collaboration with the Physics Department before December 2022. Study plan submission deadlines will be available at https://offertaformativa.unitn.it/en/lm/physics/courses-hours-examinations.

Study plans suggested by the research groups of the Physics Department (available on the website) will be automatically approved. Otherwise they need to be motivated and submitted to the approval of the Didactic Committee.

5. TUTORING

Students are strongly recommended to ask lecturers for help. For any other matter regarding the structure of the Master of Science in Physics, students may ask the members of the Teaching Committee, either directly or via their student representatives.

6. FINAL EXAM

The final exam consists of the defense of a written thesis corresponding to 39 ECTS. The Master thesis project will bring students into direct contact with at least one cutting edge research topic in Physics allowing them to contribute to its advancement. In general, the final exam aims at verifying the scientific maturity achieved by students at the end of their study career.

The research activity related to the Master thesis is usually carried out in one of the research laboratories in the Department of Physics or any other research structure collaborating with the Department of Physics, under the supervision of one professor and/or researcher in the laboratory. A co-supervisor from any other public or private national or international research institution can be formally included.

Before starting the research activity, students need to be allowed to access the laboratories by sending the form available on the web site https://offertaformativa.unitn.it/en/lm/physics/graduation to the Secretariat.

The procedures for the final exam, the criteria for the final mark, further information on the Master thesis and the evaluation committee for the final exam are available on the "Regolamento per lo svolgimento della prova finale" (https://offertaformativa.unitn.it/en/lm/physics/graduation).

7. TEACHING COMMITTEE

The members of the teaching committee are: prof. Albino Perego, the academic coordinator of the Physics Department, Stefano Azzini, Roberto Iuppa, Matteo Leonardi, Sunny Vagnozzi, Marco Zanatta.

Detailed syllabi including evaluation criteria are published at the beginning of the academic year. Any further information, not explicitly written on this document, can be found in Italian on the Manifesto 2024/2025 (this is only a courtes translation) and the Regolamento del corso di laurea magistrale in Fisica, available at the following website: https://offertaformativa.unitn.it/en/lm/physics/rules-and-regulations